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Basic ideas of the perturbation theory of the liquid state were used to develop a general method 
for constructing the equation of state valid for liquids and gases. The compressibility factor was 
decomposed into three parts: the first part corresponds to reference hard spheres or hard convex 
bodies, the second one is an attractive term of the Vander Waals type and the third part is a small 
correction, the form of which may be determined from experimental isothermal p V data and for 
which several empirical expressions were proposed. Saturated vapour volumes of nonpolar 
substances were correlated successfully by the new method. 

Still continuing numerous attempts1 to find a proper equation of state which would 
describe the p VT and vapour-liquid equilibrium behaviour of fluids in both gaseous 
and liquid state and in wide temperature and pressure ranges only witness that this 
problem is far from being solved. Although it is well known2 that an analytical 
p = p(V, T) dependence is in direct contrast with experiment in the very vicinity 
of the critical point, it would be wonderful to have such a dependence working within 
experimental accuracy for data not too removed from this point and especially along 
the vapour-liquid coexistence line. It would represent a possibility of extending this 
relation to mixtures and, with proper combination rules, of calculating their equi­
librium properties in both gaseous and liquid state which are necessary for engineering 
applications. 

In developing equations of states, different reference states had been used in the past. The 
BWR equation is the prominent representative of the reference state taken at the infinite dilution 
(Q --+ 0), i.e. of the virial expansion approach. This results in a necessity of using additional terms 
if properties of liquids are to be calculated. It does not follow from any theory what forms should 
such additional terms assume and, consequently, good equations of state of this type are rather 
a matter of serendipity. Several more3 or less4 •5successful attempts to extend the BWR equation 
and to generalize its constants should be cited here as examples. 

Another approach is to use the liquid state as the reference and to find correction terms which 
must be added subsequently. It is the basis of the perturbation theory6 which postulates that 
repulsive forces are predominantly responsible for the structure of flu ids at higher densities and 
that attractive forces can be treated as a small perturbation to efl"ectively infinite repulsive forces 
at smaller intermolecular distances. It has been shown during the past decade6 that the pertur­
bation theory is the only theory that can describe equilibrium thermodynamic properties of liquids 
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within experimental accuracy. According to this theory, the experimental compressibility factor 
z is composed of the compressibility factor corresponding to the reference state, zHB• and of 
a correction term corresponding to the presence of attractive forces. It is known from both expe­
riment and theory 7 that this second term is proportional approximately to density. For the first 
term, zHB• which may represent the contribution of hard spheres or hard convex bodies, almost 
exact expresions were found by solving the P- Y equation8 or by the scaled particle theory9

. The 
only thing to be done is to find an empirical expression for the correction term remaining after 
(ubtracting these two terms from reliable experimental p VT data, that is for the third term, 
s (q~), in the equation 

z = ZHB- A fq~ + f(<p)jcp, (1) 

where <p = Vjb, b is proportional to a true volume of the molecule 

(2) 

.y = 3 for hard spheres and }' > 3 for hard convex bodies9, i.e. for molecules of nonspherical 
shape. More refined versions of the perturbation theory10•11 treat bas a both temperature- and 
density-dependent constant. We disregard this density dependence in our paper and consider 
only the temperature dependence of b. 

The search for the correct form of the function f( tp) in Eq. (I) should start with 
reliable pVTdata on a substance for which a relation y = 3 may be assumed. Argon 
fulfills undoubtedly these criteria; it is of spherical shape and good p VT data measured 
by Michels and coworkers12 are available. We could now plot the values of(zHB - z)/e 
against e if we knew the value of b. This value can be assessed by using again the 
perturbation theory, namely from the value of the size parameter a in the L-J 12 : 6 
potential11 and from the value of a parameter with which the constant a is to be 
multiplied to obtain diameters of reference hard spheres10

• It leaves us with an appro­
ximate value forb of argon near the critical point, be= 11·3 cm3/mol, which should 
be correct within ± 10%. It leads to the value of tp at the critical point IPe = 6·65. 

The plot of(zHB- z)/e against e with the experimental pVTdata on argon at the 
reduced temperature Tr = T/Te = 1·015 is on Fig. 1 for three values of IPe : 6·0, 
6·673 and 7·0. It is seen that especially curve 1 which corresponds to the most probable 
value of be, is of nice shape with a minimum near the critical density f2e and almost 
symmetrical around this point. In view of the fact that the plot covers the pressure 
range up to 470 atm and that vertical oscillations offunctionf(IP) occur in a narrow 
range, the task of finding an empirical formula for f( tp) valid in the widest possible 
region of densities seems relatively easy. A similar behaviour off( tp) near the critical 
point has been observed for several other substances such as carbon dioxide, ammonia 
and even water, that is for the case of y > 3, or ze < 0·291. 

We may now turn the problem, assume that the function f( q>) has a maximum at 
tp = IPe on the critical isotherm (this corresponds to a minimum of the function 
(zHB - z)/e) and try to find consequences of this assumption on the solution of the 
following conditions describing the critical point 
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(3) 

The requirements on the form of the functionf(IP) may be expressed as 

( 4), (5) 

Substituting from Eq. (1) into Eqs (3), performing some of the differentiations and 
taking into account condition ( 4) we have 

Zc/IPc = ZHB/IPc - Aj<p; + f(IPc)j<p;' 

0 = IPc/2(zHB/IP)~ + Aj<p; - f(IPc)j<p;, 

0 = <p;j6(zHB/IP)~ - Aj<p; + f(IPc)j<p; - f"(IPc)/6 · 

(6) 

(7) 

(8) 

By adding Eqs (6) and (7) and for y = 3 it is possible to obtain the following relation 

(9) 

which on solution yields IPc = 6·6730 for the critical compressibility factor of argon 
zc = 0·291. Condition (4) thus leads directly to a value of <f1c, which is in good agree­
ment with the expected value of 6·65 and this result is independent of the particular 
shape of f(<p). The curve corresponding to <f1c = 6·673 is on Fig. 1 and it is denoted 
by 1. One of possibilities which should be followed further is to minimize differences 
between (zHB - z)/e of argon for IPc = 6·673 and an empirical function g(e) = f(<p). 

FIG. 1 

Dependence of (zHB- z)j(} on (} (arbitrary 
units) for Argon at Tr = 1·015 

1 (/lc = 6·673, 2 (/lc = 6·0, 3 (/lc = 7·0, 
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This procedure could yield constants of the empirical function in the vicinity of the 
critical point and simultaneously decide among several functions f( q> ). 

If we retain a general yin Eqs (6)-(8), we can obtain by eliminating the difference 
A-f( <f>c) the following two equations 

y2(1Pc + 2) + 6y(q>c - 1)- 3q>~ + 12q>; - 15q>c + 6 + 6zc(IPc- 1)4/IPc = 0, 

(Io) 

'l' 2(1Pc + 3) + 6y(q>c- 1)- q>~ + 5(p; - 7q>c + 3 + [(<f>c - 1)5/IPc] · 

· [J"( <f>c)] = 0 · (I 1) 

These two quadratic equations can be easily solved for y (positive discriminants in 
both cases) to yield a nonlinear equation for IPc· This nonlinear equation wo\,Jid 
contain Z 0 andf"(IPc) as parameters. The value of zc is an experimental quantity with 
which nothing can be further done. Some possibilities are open only for the second 
derivative off( q>) in the critical point, f"(IPc)· If we assume that 

(12) 

where n is an integer, we can estimate the influence of n on the values of IPc and y 
resulting from the solution of Eqs (10) and (11) at different values of zc < 0·291. 
It can be shown by a numerical solution of these two equations that if the value of C 
in Eq. (12) is taken fwm argon then y > 3 only if n ~ 0; for n < 0, it always holds 
y < 3 which lacks any reasonable physical interpretation. Thus, for example, the 
value of n equal to zero at zc = 0·23 corresponds to y ~ 8·3 and <f>c ~ 10·8. Little 
is known of the exact magnitude of the constant y except that it must hold y > 3. 
As far as the value of IPc is concerned we may resort to values of constants u in the 
L-J 12 : 6 potential as tabulated by Hirschfelder and coworkers13 or Reid and Sher­
wood14. We know that the ratio V.,/Nu 3 should be approximately proportional to <f>c 

and so we can compare this ratio for different substances with that for argon. Un­
fortunately we arrive at rather controversial results. According to the tabulated 
values of u, the values of <f>c depart from that for argon on opposite sides for polar 
and nonpolar substances, so that it holds 

(13) 

As the relation <f>c < ( <f>c)Ar leads to y < 3, it might suggest that the nonsphericity 
of molecules cannot be taken into account by the single constant y and that constants 
in the function/( q>) could be affected by the molecular shape, too. By solving Eq. (9) 
for Z 0 < 0·291 it may be shown that zc < 0·291 leads to <f>c < (IPc)Ar which is in 
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agreement with the left side of relation (13). On the other hand, the accuracy of the 
constants u in comparison with difference'S between theoretical values of Cflc is so low 
that relation (13) cannot be considered as established definitely, at least on its left 
side. From the tabulated values of the constants u of ammonia and water it appears 
that Cflc ~ 10·0 would be a good approximation and that n = 0 in Eq. (12) might 
yield reasonable results. The final decision of the problem whether the nonsphericity 
and polarity should be included in the function f( cp ), constant y, or both of them, 
should be made on the basis of the direct comparison between experimental data 
and calculations using different acceptable forms off( cp ). 

We have also plotted experimental p VT data of different substances on the 
(zHs - z)/e vs Q scale at subcritical and supercritical temperatures and with different 
values of b. The form of this dependence as depicted on Fig. 1 remains much the same 
at both T < Tc and T > Tc. At T < Tc, there is a gap corresponding to the two-phase 
region, which becomes wider as the temperature decreases. This makes difficult any 
conclusive statements regarding the form of the function f( cp ). In order to preserve 
the symmetrical shape off( cp) at lower temperatures, it would be necessary to assume 
a slightly negative slope of db/dTwhich is in agreement with the perturbation theory. 
Physically, it means that the size of molecules decreases with increasing temperature. 
This .trend continues to T > Tc. At supercritical temperatures, changes in the location 

TABLE I 

Mean"/Maximum Absolute Percent Deviations in Calculated Saturated Vapour Volumes for 
Different Forms of Functionf(q~) 

Substance Tbr Eq. (15) Eq. (16) Eq. (17) 

Argon17 0·58 1·5/4-6 0·7/1·0 0·9/1·3 
Methane18 0·52 1·5 /8·5 1·1/H 1·3 /3-8 
Ethane19 0·58 1·2/4·3 2-4/H 2-6/4·0 
Propane19 0·62 1·4/5·1 2-6/H 2·8/4·0 
Butane19 0·64 1·6/6·5 2·0/2-8 2·3 /3·3 
Carbon 

monoxide18 0·51 2·9/5-4 2-6/6·3 2-8/6·6 
Carbon 

dioxide18 0·71 1·7/5·6 2· I /3·3 2-4/3-6 
Cyclopropane20 0·74 1·9/6·1 2·7/3·7 3·1/4·1 
Ammonia18 0-49 4·1/7·3 6·8/ 18·0 7·4/ 18·0 
Water21 0-45 2·9/6·5 5-4/17·0 6·0/20·0 

a Mean deviation= L 100 I Veale - vexpl /nexp vexp· b Lower limit of the temperature range co­
vered by the computations. 
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of the minimum on the plot have been observed. Irrespective of the choice of b, this 
minimum shifts slowly from f2c to lower densities with increasing temperature. This 
holds for both spherical nonpolar (y = 3) and nonspherical, possibly polar (y > 3) 
molecules. 

As far as the form of the temperature dependence of constants b, A, y and constants 
in the function f( <p) is concerned, only few theoretically founded suggestions exist. 
The molecular shape should not be affected much by temperature and consequently 
one would expect that constant y could be temperature-independent. As absolute 
values of the empirical function f( <p) are small compared with first two terms on the 
rhs ofEq. (I), one could also expect that the temperature dependence off(<p) would 
play a minor role in the determination of thermodynamic properties of fluids and that 
the corresponding constants could be also treated as temperature-independent. 
Of different constants in the function f(<p), the temperature dependence would be 
perhaps most relevant for a constant corresponding to the location of the minimum 
off( <p) on the density axis. However, according to some preliminary calculations, 
the temperature dependence of both A and b cannot be neglected. The temperature 
dependence of A can be expressed by an arbitrary suitable empirical function. For 
the temperature dependence of b, the perturbation theory offers an expansion 

(I4) 

which follows from the formula developed by Barker and Henderson15 for the dia­
meter of reference hard spheres. Thus, the recommended procedure for finding new 
equations of state for' the description of behaviour of both gases and liquids consists 
of three steps: 

I) to find a proper functional dependence for f( <p) for spherical nonpolar molecules. 
This dependence should be found by an analysis of isothermal pV data at slightly 
supercritical temperatures, where it is plausible that b = be. 

2) To decide whether nonsphericity and polarity can be included through the con­
stant y, function!( <p), or both of them. This decision should also result from an ana­
lysis of slightly supercritical isothermal p V data. 

3) To find a final form of the equation of state in which the temperature depen­
dence of at least constants b and A would be included. This final form should result 
from a minimization procedure including extensive sets of reliable p VT data. 

Calculations . We have made some preliminary calculations with three different forms of 
f(rp) and for y = 3: 

and 

f(rp) = - C(rp - ffJc) 2 f rp 2 
, 

f(rp) = C/ [1 + 0·5 (1 - f/Jc/rp) 2
], 

f(rp) = Csin(l5/rp - 15/rpc + rt /2). 

(15) 

(16) 

(17) 
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All these three functions have the necessary maximum at 'P. = rp0 • The values of b, A and C were 
determined in the critical point by solving Eqs (6)-(8). The temperature dependence of C was 
neglected in further calculations and the test was performed on values of b, A and saturated vapour 
volumes Vvap calculated from the constant C and known experimental saturated vapour pressures 
p

8 
and saturated liquid volumes Vliq obtained by simultaneous solution of the following equations 

(18) 

The computations were made by the method due to Joffe and coworkers16 and they cover the 
temperature range from Tr = 0·5 - 0·6 to the critical point. Mean and maximum absolute perce~t 
deviations in calculated values of Vvap are given in Table I for ten substances with z0 in the range 
0·23-0·29. It is seen that best results for nonpolar substances are obtained with the help of 
Eqs {16) or (17) whereas saturated vapour volumes of highly poral and associated substances 
such as water or ammonia are reproduced best with Eq. (15). It is not obvious from Table I, 
but the maximum deviations are observed in the vicinity of the critical point. At lower temperatures, 
the agreement is within experimental error; this may be caused partially by lower pressures at 
which the vapour behaves more like the ideal gas. Another encouraging thing is that constants 
A and b depend only mildly on temperature; the total change in the whole temperature range 
amounts to 10-20%. The slope of the b vs T dependence is negative, as expected. 

We hope that we will be able to improve these result> by incorporating the con­
stant y into the equation of state and that the improved equation could be readily 
extended to mixtures. 

UST OF SYMBOLS 

N Avogadro's number 
p pressure 
V molar volume 
T absolute temperature 

Subscripts 

critical point 
reduced property 
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